วันนี้จะพามาทำความรู้จัก 6 ประเภทของ Data ที่นักการตลาดต้องรู้ ตั้งแต่ Quantitative กับ Qualitative Data แล้วแยกย่อยไปจนถึง Nominal Data กับ Ordinal Data กับอีกสองชนิดสุดท้ายที่สำคัญแต่อาจไม่คุ้นกันอย่าง Discrete data กับ Continuous data ครับ
ทักษะเรื่อง Data Thinking หรือ Data Literacy ในวันนี้มีความสำคัญเพิ่มขึ้นทุกวัน เพราะเราก้าวเข้าสู่ยุค Data-Driven และ AI มากขึ้นทุกวันโดยที่เราอาจไม่รู้ตัว และในศตวรรษที่ 21 นี้บริษัทต่างก็ต้องการคนที่มีความรู้ความเข้าใจเรื่องดาต้ามากกว่าคนที่ไม่มี เพราะในวันที่เราต้องทำงานกับดาต้าที่มากขึ้นเรื่อยๆ การรู้ไว้ว่าดาต้ามีกี่ชนิด กี่ประเภท แล้วแต่ละประเภทต่างกันอย่างไร จะทำให้เราได้เปรียบกว่าคนที่ไม่รู้เพราะเราจะรู้ว่าเราจะต้องหยิบดาต้าแบบไหนเข้ามาใช้ เราต้องการดาต้าแบบใดเพื่อแก้ปัญหา ไม่ว่าจะในด้าน Statistics ในด้าน Marketing Research หรือแม้แต่ในด้าน Data Science เองก็ตาม
ในตอนนี้เราจะมาเรียนรู้กันว่าโดยส่วนใหญ่แล้วดาต้าแบ่งออกเป็นกี่ประเภทหลัก แล้วในแต่ละประเภทหลักแบ่งออกได้อีกกี่ชนิดย่อย พร้อมกับภาพตัวอย่างเพื่อให้เข้าใจไปพร้อมกัน ถ้าพร้อมแล้วไปทำความรู้จักกับ 6 Types of Data กันครับ
Quantitative data นั้นจะง่ายต่อการนำไปใช้งานตามหลักสถิติ เอาไปทำ Data Visualization ต่อได้ง่าย สามารถเอาไปแสดงออกไปรูปแบบของกราฟชนิดต่างๆ ได้ ไม่ว่าจะ Line chart, Bar graph, Scatter plot หรืออื่นๆ อีกมากมาย
ตัวอย่างข้อมูลประเภท Quantitative data เช่น คะแนนสอบวัดผลของเด็กนักเรียน น้ำหนัก ไซส์รองเท้า อุณหภูมิในห้อง
และใน Quantitative data แบ่งออกได้อีก 2 ชนิดย่อย คือ Discrete data และ Continuous data ซึ่งเดี๋ยวจะมาอธิบายต่อในภายหลังครับ
2. Qualitative data ข้อมูลเชิงคุณภาพ
เป็นที่รู้จักกันในนามข้อมูลเชิงคุณภาพ แต่เดิมดีข้อมูลประเภทนี้จะมีจำนวนน้อยมาก หายาก เข้าถึงได้ลำบาก ต้องผ่านการทำ Marketing Research ในรูปแบบ Interview หรือ Focus group ที่มีค่าใช้จ่ายสูงแต่ได้ดาต้ามาน้อยมาก
Qualitative data ยังถูกเรียกว่า Categorical data เพราะข้อมูลที่ได้มาสามารถนำมาจัดลำดับตามกลุ่มหัวข้อหรือหมวดหมู่ได้ และถ้าทำได้ดีพอก็จะกลายเป็นตัวเลขที่แน่นอนชัดเจนซึ่งสามารถนำไปวิเคราะห์ต่อได้ดีขึ้นเช่นเดียวกับ Quantitative data
ตัวอย่าง Qualitative data เช่น สีต่างๆ สถานที่ชอบไปในวันหยุด ชื่อ เชื้อชาติ เป็นต้น
และ Qualitative data ยังแบ่งแยกย่อยออกได้อีก 2 ชนิดเช่นกัน ประกอบด้วย Nominal data และ Ordinal data ซึ่งเราจะมาทำความรู้จักกันต่อครับ
Nominal data กับ Ordinal data ต่างกันอย่างไร
3. Nominal data ข้อมูลระบุประเภท
Nominal เป็นคำภาษาลาตินมาจากคำว่า Nomen ซึ่งหมายถึงคำว่า Name ในภาษาอังกฤษ ดังนั้น Nominal data นี้จึงหมายถึงดาต้าประเภท Label หรือการระบุว่าข้อมูลนี้คืออะไร โดยไม่เกี่ยวกับปริมาณที่สามารถวัดได้ในภายหลัง
ดังนั้น Nominal data จึงเป็นแค่ชื่อที่เอาไว้ระบุหรือจัดกลุ่มประเภทของ Data ที่มีให้ง่ายต่อการจัดการหรือนำไปวิเคราะห์ต่อในภายหลัง ตัวอย่างเช่น เพศ แล้วค่อยระบุทีหลังว่าชายหรือหญิง สีผม แล้วค่อยระบุว่าสีอะไร สถานะ แล้วค่อยระบุว่า โสด แต่งงานแล้ว หรือหย่าร้าง เป็นต้น
Ordinal data คือข้อมูลที่ใช้แสดงลำดับในข้อมูลอีกทีหนึ่ง หรือนึกถึงคำว่า Order ก็ได้ครับ นี่คือความแตกต่างจาก Nominal data ที่เป็นการจำแนกชนิดของข้อมูลแต่ไม่สามารถลำดับความแตกต่างต่อได้
ดังนั้น Ordinal data จึงจัดอยู่ระหว่าง Qualitative กับ Quantitative คือมีทั้งคุณค่าและสามารถวัดปริมาณได้พร้อมกัน เช่น ถ้าเทียบกับการใช้ Social listening tool ก็หมายถึง Sentiments Analysis ที่สามารถวัดอารมณ์ความรู้สึกในแต่ละโพสในหัวข้อที่เราอยากรู้ออกมาได้ เช่น ชอบ ไม่ชอบ เฉยๆ หรือถ้า Social listening tool ใหม่ๆ ที่สามารถทำงานได้ละเอียดๆ ก็จะแยกย่อยอารมณ์ออกมาได้อีกหลายเลเวล จากนั้นค่อยเอามาสรุปว่าตกลงมีคนที่ชอบรวมเท่าไหร่ และไม่ชอบรวมเท่าไหร่ครับ
ตัวอย่าง Ordinal data เช่น อันดับที่ 1 2 หรือ 3 หรือเกรดที่ได้จากการวัดผล A B C หรือ D หรือคะแนนความพึงพอใจหลังการขาย 1 ถึง 10 หรือสถานะทางการเงิน รวย ปานกลาง ยากจน
สรุปได้ว่า Nominal data คือข้อมูลที่ระบุสุดท้ายแต่ไม่สามารถแตกระดับแยกย่อยเพื่อวัดผลได้ แต่พอจะวัดจำนวนได้ แต่ Ordinal data คือข้อมูลที่สามารถวัดระดับความแตกต่างได้ แต่ไม่สามารถเอาตัวเลขที่ได้มาบวก ลบ คูณ หาร หรือคำนวนโดยตรงครับ
Discrete data กับ Continuous data ต่างกันอย่างไร
2 ประเภทสุดท้ายของ Data ที่จะพูดถึงในบทนี้เป็น Subset ของ Quantitative data หรือข้อมูลเชิงปริมาณที่นักการตลาดควรรู้จักไว้ เพราะในหลักสถิติ การวิเคราะห์ข้อมูล การทำ Marketing research หรือแม้แต่กับงานด้าน Data science หลายครั้งในการตัดสินใจเลือกดาต้ามาใช้ก็มักจะเป็นสองประเภทนี้ส่วนใหญ่ การรู้ไว้ว่าเรากำลังใช้อะไรอยู่จึงทำให้ง่ายต่อการเลือกหยิบมาใช้ในอนาคตครับ
ถ้าสามารถยกตัวอย่างการนำไปใช้งาน จะดีมากๆครับ